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Abstract—We re-examine the commonly held view that learning and memory necessarily require poten-
tiation of synapses. A simple neuronal model of self-organized learning with no positive reinforcement is
presented. The strongest synapses are selected for propagation of activity. Active synaptic connections are
temporarily “tagged” and subsequently depressed if the resulting output turns out to be unsuccessful. Thus,
all learning occurs by mistakes. The model operates at a highly adaptive state with low activity. Previously
stored patterns may be swiftly retrieved when the environment and the demands of the brain change. The
combined process of: (i) activity selection by extremal “winner-take-all” dynamics; and (ii) the subsequent
weeding out of synapses may be viewed as synaptic Darwinism.

We argue that all the features of the model are biologically plausible and discuss our results in light of
recent experiments by Fitzsimondset al. on back-propagation of long-term depression, by Xuet al. on
facilitation of long-term depression in the hippocampus by behavioural stress, and by Frey and Morris on
synaptic tagging.q 1999 IBRO. Published by Elsevier Science Ltd.
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1. INTRODUCTION

Despite the abundant knowledge of a myriad of
cellular and molecular aspects of neuronal develop-
ment, memory and learning, there is no clear under-
standing of which fundamental principles are at
work in organizing the brain in order to allow it to
act, remember, forget and adapt. We do not know
the answer to the question: what is the essence of the
biological mechanism that allows the brain to work
at its incredible speed and precision?

One obvious strategy is to obtain detailed infor-
mation of reduced parts of the problem in the hope
that the complicated mechanism could be resolved
from the bottom-up. However, even the most
detailed mapping of the individual parts of the
brain does not constitute understanding of brain
function, just as complete knowledge of the function
of transistors and wires does not in itself add up to an
understanding of how a computer works. How can
the enormous experimental information that has
been gathered be synthesized to create even a rudi-
mentary picture of how one may explain behavior
which can be identified as “intelligent”.

The point of view has often been expressed that
the brain is so complicated that it cannot be
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understood by the brain. Indeed, it consists of tril-
lions of neurons each connected to tens of thousands
of other neurons. We do not subscribe to this view.
Although there is an enormous difference between a
lobster brain and a human brain, our working
hypothesis is that they are built and organized by
the same few fundamental principles. By this, we
do not imply, for instance, that lobsters must have
a thalamus as mammals do, but that there might be
some “universal” and “simple” mechanism which
allows a large number of neurons to connect auton-
omously in a way that helps the organism to survive.

Our goal is to identify this mechanism. Our strat-
egy is to construct a simple model that demonstrates
the principle without specific reference to the under-
lying complicated physical and chemical properties
of the neurons, etc., which are responsible for the
implementation in a real brain.

Our model is based on two simple and biologi-
cally plausible principles, where one concerns the
activity (i.e. neuronal firing), and the other the plas-
ticity (i.e. the changes in synaptic strength): (1)
Activity only propagates through the strongest
connections. Thus the overall activity is kept low
by this “winner-take-all”, extremal dynamics. (2)
There is only negative feedback from the environ-
ment to the active synapses, i.e. we are talking about
learning with a stick and no carrot. As a result, the
model operates at a highly adaptive, and possibly
critical state. “Efficient, self-organized, and adaptive
behavior can take place only when the two principles,
negative feedback and extremal dynamics act
together. One is useless without the other”. We
show that our simple mistake-driven neuronal learn-
ing model can out-perform other more complicated
and sophisticated models that use positive reinforce-
ment.

The paper is organized as follows. In order to
motivate our views, we would like in the first
sections to dwell on the train of thought that even-
tually led us to our particular model. Section 2
contains a succinct account of how mainstream
ideas, in our opinion, have overemphasized the
role of enhancing or reinforcing synapses in
response to examples. The strong belief in Hebbian
reinforcement has definitely biased both the experi-
mental and theoretical research to “search under the
light”, preventing the objective examination of alter-
native scenarios. We argue that negative reinforce-
ment is essential, and that any positive
reinforcement reduces the ability to adapt. Section
3 presents a chronological description of theories
supporting a Darwinian view of the problem at
hand. Section 4 establishes the restrictions we
impose in attempting to solve the problem in a biolo-
gically reasonable way. The reader who is not inter-
ested in all of this may proceed directly to section 5
in which our basic model is defined and analysed.
This section includes our main results. The unique
features of the model are discussed, emphasizing its

ability to fast adaptation. Its robustness against noise
and the case of arbitrary geometry are discussed.
The performance is illustrated with a simple simu-
lated task. Section 6 closes the paper with a discus-
sion of recent experimental findings of synaptic
depression in light of our model.

2. POSITIVE VERSUS NEGATIVE REINFORCEMENT

There is a good deal of hard-wiring defined by the
genetic code as it has evolved through biological
evolution, but most of the connectivity has to be
self-organized through the life of the individual.
There is simply not enough information in the
human (3× 109 base pairs) DNA to provide a blue-
print for all (1018) the connections. Nowadays no
one argues the fact that the connectivity of neurons
could not be specified in the genoma.30 DNA can
encode for a variety of neuronal morphologies,
different neurotransmitters, diverse adhesion mole-
cules, etc., but certainly cannot specify with which
other a given neuron should be connected.

Thus any brain, from the simplest to the most
highly evolved, must be able to wire itself starting
from structureless connections without consulting
another brain. Furthermore, it must remain adapt-
able, i.e. capable to alter the connection matrix when
the environment changes. The correct response to a
given event tomorrow may not be the same as today.

It is widely believed and accepted that learning in
the brain resides in the plasticity associated with
alterations in synaptic efficacy. Without exception,
contemporary theoretical formulations of such
learning follow Hebb’s ideas26 of reinforcement,
where synaptic connections between neurons
excited during a given firing pattern are strength-
ened. This mimics the process known as long-term
potentiation (LTP), which has been widely investi-
gated in mainstream experimental neuroscience.

The corresponding mathematical models are
inclined towards similar ideas. To be specific, let
us mention the most relevant artificial neural
network models that have been suggested as
mechanistic explanations of learning and memory.
These are the “attractor” neural networks (ANN)
and various forms of feed-forward networks trained
by back-propagation algorithms.

The ANN were introduced 20 years ago by John
Hopfield.27 Memory was represented by patterns of
up and down “spins” representing firing and non-
firing neurons, respectively. In “back-propagation”
neural networks the environment provides an error
signal used to correct synaptic connections by a
Newton iteration method.

While both produce interesting results, it is widely
recognized that they lack biological realism. In
ANN the necessary assumption of fixed
(“clamped”) states is not realistic. In regard to
back-propagation it is clear that the environment
cannot provide the required information about the
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specific error of the output signal. Furthermore,
elaborate external computations are needed to set
up the synaptic connections. A “miracle” must
take place at some stage in those models through
the interaction with another brain, thus none of
these networks is “self-organized”.

There has been little success relating these models
to real brain function, although they have turned out
to be very useful in an engineering context for
various problems. In fact, we believe, in accordance
with a recent review (see Table 1 in Reeke)35 that
essentially all contemporary artificial neural
network models are biologically implausible.

The work coming closest to being biologically
consistent is probably Barto’s and colleagues9,10,33

on “reinforcement learning”. Here, the environment
simply provides a feedback signal informing the
brain on the success (or lack thereof) of its efforts.
The environment acts as a critic rather than a
teacher. However, the learning is extremely slow
and the system has to be completely re-programmed
from scratch when presented with a new learning
task, even one which it has experienced before.
The system has little ability to adapt. We shall
argue that this is due to the presence of positive
reinforcement rules.

All of the above models emphasize the role of
enhancement of synaptic strength as the crucial
mechanism for learning. However, long-term synap-
tic depression (LTD) in the mammalian brain is
almost as prevalent as potentiation, but there appears
to be little or no understanding of its functional role.
Working hypotheses cover a wide range, but depres-
sion is always given an auxiliary function to poten-
tiation. Early ideas by Cooper15 motivated a detailed
description of the dual depression/potentiation char-
acter of the plastic changes, first in the hippocampus
and then in the neocortex.20,31

A recent review,7 reflecting on the current variety
of ideas regarding the functional role of LTD, spec-
ulates: “Although it is conceivable that LTP is the
critical phenomenon used for storing information,
and that LTD may exist simply to reset LTP, it
must be noted that it is also conceivable for the
converse to be true.”

Turning things upside down, we suggest that
“depression” of synaptic efficacy is the fundamental
dynamic mechanism in learning and adaptation,
with LTP playing a secondary role.

There are two fundamental differences between
the classical view of learning by reinforcement and
the view proposed here.

1. Learning by reinforcing good responses is a
process that by definition never stops. No explicit
rule ends the reinforcement when the goal has
been reached. Without such an extra rule, learn-
ing by reinforcement could be regarded as addic-
tive. However, learning which proceeds only by
correcting mistakes implies a process that stops

as soon as the goal has been achieved. This
prevents the formation of “deep holes”, or highly
stable states from which adaptation to new rules
is difficult and slow, requiring, perhaps, a signifi-
cant amount of random noise.

2. If an adaptive system is placed in a new environ-
ment, or otherwise subjected to learn something
new, the likelihood of making mistakes is gener-
ally larger than the chance to be initially right.
Therefore, the opportunity to shape synapses is
larger for the adaptive mechanism that only relies
on mistakes, leading to faster convergence.

Negative feedback is the first of our two principles.

3. THE DARWINIAN VIEW

There is some important prior work suggesting
some sort of negative feedback in the process of
learning.

Young42–44 was probably the first to suggest that
brain changes involved in adult learning could be the
result of the elimination of neuronal connections. He
phrased learning in the octopus as “closing of
unneeded channels”:

“In discussions of possible synaptic changes
during learning it is usually assumed that the change
is an increase in the ease of passage along a parti-
cular pathway, and that this increase occurs gradu-
ally, that is, partially on each occasion of learning.
The opposite hypotheses have been put forward
here: that learning is by the inhibition of an
unwanted pathway, and that this occurs suddenly
and completely in each unit or module, the mnemon
that is concerned.”

Young’s mindset about octopus learning and
memory systems was footed on the fact that negative
feedback was already implemented in simple mono-
synaptic or polysynaptic reflex systems even in
brainless animals. Thus, one solution that evolution
could explore and further modify would be a kind of
multisynaptic reflex system in which the essential
mechanism would be temporary or permanent inhi-
bition of unneeded channels until the action fits the
demand, following an initial random action. This
simple strategy of trial and error can be efficient
enough for certain organisms, and if supplemented
with a way to amplify the bias towards the right
solution while preserving previous successful trials,
it could implement the more demanding requirement
in higher organisms. Our own ideas endorse this
early clever thinking.

Richard Dawkins18 speculated that selective death
of neurons could underlie storage of memories.
Subsequently, in the 1980s Albus1 hypothesized
that, “pattern storage must be accomplished princi-
pally by weakening the synaptic weights rather than
strengthening them.”

Albus’ ideas later inspired some of the work on
“reinforcement learning”, mostly articulated by
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Barto.9,10,33Over the last decade, Changeux11–14,19,39

has been a leading proponent of similar ideas, as
delineated in his book “Neuronal Man”:11

“The 10,000 or so synapses per cortical neuron
are not established immediately. On the contrary,
they proliferate in successive waves from birth to
puberty in man... One has the impression that the
system becomes more and more ordered as it
receives instructions from the environment. If the
theory proposed here is correct, spontaneous or
evoked activity is effective only if neurons and
their connections already exist before interaction
with the outside world takes place. Epigenetic selec-
tion acts on preformed synaptic substrates. To learn
is to stabilize pre-established synaptic combinations
and to eliminate the surplus.”

Edelman21,22 and colleagues35–37 have articulated
a selectionist scheme known as neuronal group
selection, a Darwinian mechanism able to explain
the formation of higher functions in the working
brain. These ideas emphasize: (i) generation of
variability, both structural and dynamical, within
and between neuronal populations; (ii) interaction
of the neural circuitry with the organism’s environ-
ment; and (iii) differential amplification or attenua-
tion of neuronal connections (depending upon its
functional contribution).

It is illuminating to read the accounts of these
early supporters of a Darwinian view of the brain
(the American psychologist W. James28 was the first
we know of to talk in these terms as early as 1890).
However, to support any sensible claim about the
advantage of this perspective, there is a need for
mathematically tractable models such as the one
discussed in the following sections.

4. ESTABLISHING THE GROUND RULES

How do we visualize the problem that the brain
has to solve, and what tools are biologically accep-
table?

First of all, the purpose of the brain has to be
defined in advance. If there is no goal of the game,
how can one even start talking about solving the
problem? Specifically, we assume that any brain is
able to judge what is good and what is bad by a
mechanism which is not self-organized on the
time-scale of brain function, but has been estab-
lished through Darwinian evolution. There has to
be a “Darwinian good-selector”. Roughly speaking,
one might think of the sugar level in the blood result-
ing from getting food as providing such a signal. In
more elaborated organisms one can reasonably
assume that basal ganglia projections to all areas
of the brain will also be able to broadcast elementary
outcome signals such as good/bad, pain/comfort.
Specifically, we assume that the elementary brain
(or the brain region being modeled) receives a global
signal which simply states whether the result of the
action caused by the output of the brain led to a

favorable result or not. This signal is all that we
are allowed to act upon. The environment does not
tell us which specific neurons should have fired or
which muscles should have been activated. The
environment acts like a critic, not a teacher. If we
think of a brain playing a game, the only information
which is provided is a signal that tells the system
whether it won or lost at the end of the game. The
Darwinian good-selector interprets winning as good,
losing as bad. Of course, one might think of the
signal as being highly preprocessed by hardwired
mechanisms before it reaches the brain, or one
might even think of the signal as coming from
other areas of the brain, which play the role of
environment for a given area.

In contrast, everything else has to be self-
organized. We assume that initially all inputs from
the environment (visual signals, etc.) are fed in
randomly, the connections between neurons are
random, and the outputs are randomly connected
with muscles. The system is then on its own, acting
upon the feedback signal only in a pre-established
way. We assume that the feedback signal for plasticity
is broadcast to all neurons, which are then modified
using only the information which is locally available.
One might suspect that the limitations evoked by the
demand of self-organization and biological feasibility
may limit our choices to the extent that the resulting
learning process would be slow and inefficient. To our
surprise, the resulting learning process turned out to be
extremely fast, as described later.

4.1.On self-organized criticality

Some of the intuition behind our modeling
approach comes from the study of self-organized
critical phenomena.3,5,6 A good metaphoric picture
is that of a pile of sand on to which sand is poured at
a very slow rate. In the beginning, the pile is flat and
stable. As the process continues, the pile becomes
steeper and small avalanches will occur. Eventually
there will be avalanches of all sizes, up to the full
size of the system. The pile has reached the self-
organized critical state, where most of the surface
is very steep, with grains very close to the instability
threshold. Consequently, very small modifications
of the configurations of the sand-pile can lead to
large changes in the flow of sand; the susceptibility
is high.

The mathematical modeling of sand-piles bears
some striking resemblance to models of neuronal
function. In sand models, each site receives sand
grains from neighbor sites. When the height exceeds
a critical threshold, there is a toppling event where
grains of sand are sent to the neighboring sites. In
neurons, each neuron receives a signal, the “action
potential”, from other neurons. When the sum of the
inputs from other cells exceeds a threshold, the
neuron fires and a signal is sent to other neurons.
Could it be that the brain operates at a critical
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state, just as the sand models? The sand-pile does not
perform any useful task so at the very least a
mechanism for plastic change of the toppling rule
has to be added. Already, Turing40 has speculated
that perhaps the working brain needs to operate at a
barely critical level, to stay away from the two
extremes, namely the too correlated subcritical
level and the explosive supercritical dynamics.

Instead of adding the sand, one could simply tilt
the pile slowly. The avalanche will then start at the
steepest site. This type of dynamics is called “extre-
mal dynamics”34 and has been utilized in recent
models of evolution,4 where the least fit species
was always weeded out.

Extremal dynamics (winner-take-all) is our

second principle. It serves to take the system to the
adaptive critical state. Also, it plays a major role for
the credit assignment by keeping the number of
neurons eligible for punishment small.

5. THE MODEL

Just about any arbitrary architecture, for instance
a completely random one (we return to that case
later), can be chosen, but for pedagogical reasons
we begin with a rather simple geometry. We
consider a two-layer network whereK represents
the outputs,I the inputs andJ the middle layer
(Fig. 1). The inputs are very simple: they consist
of a single input neuron firing. This could represent
a visual signal. The output cell could represent a
motor response. Indeed, the usefulness and thus
the evolution of the brain started when biological
species achieved the ability to escape from preda-
tors, and search for prey, by moving, so it makes
sense to describe brain function in connection with
the sensory-motor system integration. No immobile
species has a brain. The argument had been made1

that higher brain functions evolved also as similar
input–output transformations but for more sophisti-
cated environmental demands.

Each input is connected with each neuron in the
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Fig. 1. Neurons in layerJ have synaptic connections with all
inputs inI and connect to all neurons in layerK.

Fig. 2. Learning six associative mapping (patterns illustrated in the right box), showing the outputs (y-axis) to be
connected with the inputs (x-axis). Seven inputs and outputs and 300 neurons in the middle layer were used with
d � 0.01. The bottom diagram shows which of the six patterns was presented at a given time. The top diagram
shows the relative distance between the desired output and the net’s current output. A distance of zero meant that
perfect learning had been achieved; after 50 additional iterations (for visualization purposes), a new pattern was

presented.



middle layer which, in turn, is connected with each
output neuron, with weightsW representing the
synaptic strengths. The network must learn to
connect each input with the proper output for any
arbitrary associative mapping (see Fig. 2). Let us
arbitrarily choose a map (labeled “a”) where the
goal is to connect each of seven inputs 1–7 to the
corresponding seven outputs, 1–7. The weights are
initially randomized, 0, W , 1.

In order to achieve efficient self-organized learn-
ing, it is essential to keep the activity low. In
previous work on self-organized learning,2,38 this
was done by a global threshold control. Here, we
invoke winner-take-all dynamics: only one neuron
k, namely the one that has the largestw(k,j), fires at
each time step.45

The entire dynamic process is as follows:
An input neuroni is chosen to be active. The

neuronjm in the middle layer with the largestw(j,i)
is firing. Next, the output neuronkm with the maxi-
mumw(k,jm) fires. If the outputk happens to be the
desired one, nothing is done, otherwise the two
synapses which were involved in the bad decision,
w(km,jm) and w(jm,i), are both depressed by a fixed
amountd. This is the only parameter in the model.
The value ofd is not important—it is the natural unit
in our model, like the grain of sand in the sandpile
model. In order to prevent the synaptic strength from
decaying forever, the amountd is redistributed
equally among other synapses. This redistribution
does not have to be related to any particular event,
but can proceed at a uniform compensatory rate.
Then another random input neuron is chosen and
the process is repeated.

The physiological process that we have in mind is
one where the synapsesw(km,jm) andw(jm,i) connect-
ing all firing neurons are “tagged” by the activity.
The tagging lasts long enough to ensure that the
result of the process is available—the time-scale
must match typical processes of the environment
rather than firing rates in the brain. If a negative
feedback signal is received all the synapses which
were involved and therefore tagged are punished,
whether or not they were “responsible” for the bad
result.

The iterative application of this rule leads to a
quick convergence to any arbitrary input–output
mapping. Figure 2 shows this for the map “a”
where the seven inputs are mapped to the corre-
sponding seven correct outputs in a few hundred
time steps. After this, there are no further modifica-
tions since all actions are correct.

It is now clear how the use of winner-take-all
extremal dynamics solves the crucial “credit assign-
ment problem”10 (which has been the stumbling
block in previous attempts to model self-organized
learning), in a simple and elegant way. The
dynamics assures that only very few synapses are
active in the process and therefore eligible for later
punishment. This allows patterns associated with
other inputs to remain largely intact. In traditional
reinforcement schemes this is not the case, and the
learning becomes extremely slow.10

It is worth reflecting on the basic principles
behind this simple model. There is a process of
selection followed by a process of possible depres-
sion. The former assures that activity only propa-
gates through the strongest available connections.
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Fig. 3. Landscape of synaptic strengths between one input and 200 neurons in the middle layer. The encircled
value corresponds to the strongest connection between the input neuron and the output layer. The arrow and the

box indicate other connections likely to be used in the future.



In the case of unwanted results, the latter makes sure
that some other neurons have a chance next time to
offer a better solution. This is exactly the essence of
natural selection in the context of evolution. The
fittest organism is the fittest not because it has prolif-
erated by enhancing its intrinsic abilities, but simply
because others have been weeded out by being rela-
tively weak. As learning (evolution) proceeds there
is no further advantage for the successful (strongest)
connection. In traditional Hebbian networks the
differences between “good” and “bad” connections
are always large.

The feature just commented on provides another
interesting property to the model. Remapping to new
cases is straightforward for this network, which
demonstrates the ability to adapt quickly to arbitrary
new situations. After learning the identity map the
network was exposed successively to five other asso-
ciative maps, labeled “b” to “f”, respectively, where
the definition of correct outputs has been modified.
The small inserted diagrams in the figure illustrate
which output is satisfactory for each input. The
inverse map “b” can be thought of as turning the
visual field upside down when compared with “a”.
It can be seen that the error (plotted in the top
diagram) quickly returns to zero, indicating that
the new pattern has been completely learned. This
dynamic process has no analogue in traditional
neural networks where the synaptic strengths have
to be recalculated from scratch for each new input–
output mapping, although this single input–output
mapping can be much more complicated than the
one studied here.

The reason for quick relearning (adaptation) is
simple. As was already discussed, the rule for

changing synaptic strengths ensures that synaptic
changes occur only at neurons involved in wrong
outputs. Therefore, the landscape of weights is
only re-shaped to the point where the new winners
barely support the new correct output, with the old
pattern only slightly suppressed. Thus, only a slight
suppression of a currently active pattern is needed in
order to generate new patterns when need be.

The most spectacular feature of our model is its
ability to remember quickly “old” patterns which
have been correct once in the past. This is illustrated
in Fig. 2, where the pattern “a” is learned much more
quickly the second time around. The learning time
decreases even further if the system is subjected to
more learning cycles.

How can that be? Figure 3 shows the strengths of
the synapses connecting one input with all of the
middle layer neurons. These values are the ones
from which one winner will be selected. It is seen
that the landscape include very many values which
are very close to that of the active one, a manifesta-
tion of the critical nature of the state. Only a small
perturbation of the strength is needed to suppress the
currently active one (the winner, encircled in the
figure), and previously active synapses can easily
be activated again. This contrasts with the classical
reinforcement scenario where at the end of some
pre-established learning period the correct synapses
are dominating the incorrect ones. Then adaptation
is slow since new learning has to start essentially
from scratch, and there is no memory kept of old
patterns. One could speculate that LTP appears to be
useful only for permanent learning patterns.

Suppose, for instance, that the strongest synapse,
indicated with a circle in Fig. 3, is the one associated
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Fig. 4. Scaling of the average learning time (per input) as a function of the middle layer/input layer ratio. Values
represent means of 128 realizations. Learning time was defined as the number of steps required to learn all input–

output associations.



with the current correct input–output mapping, say
“a”. If the environment changes so that “b” is now
the correct map, the current responses to the seven
inputs will be incorrect, and punished by an amount
d. Since they were only barely larger than the other
strengths, they will become inactive in a few steps,
and synapses related with patterns which have been
correctly learned in the past may re-emerge.
Suppose that a pattern similar to “c” emerges utiliz-
ing the synapse indicated with a square. This will
also be deemed wrong by the Darwinian good-detec-
tor, and suppressed in another few steps. Eventually
the synapse (indicated with an arrow) providing the
correct pattern will be selected. Thus, reading
through past experiences, the correct mapping may
become established quickly without having to
consider the entire space of possible synaptic
connections. Sometimes the recovery fails because
of overlap between the patterns formed in construct-
ing the correct connections. The fast retrieval of old,
good patterns is further enhanced if synapses which
have never been involved in correct outputs are
punished much more severely than the synapses
whose firing at least once has produced a good
result.

Any amount of positive reinforcement will tend to
interfere with this ability, by enhancing the currently
correct connection above the level of other synapses,
and prolong the time required to suppress it when
need be.

5.1.Robustness against noise

The system is robust with respect to noise.
Suppose that when selecting the winner, a small
amount of noise is added to all weights. This
might cause an incorrect synapse to be selected
instead of the winner. As a result, the synapse will
be depressed. This might happen for a while, but
eventually the synaptic strengths will become
suppressed below the level where the noise can acti-
vate them, and the input–output mapping becomes
perfect. The price which had to be paid was the
suppression of incorrect synapses below the critical
level or, equivalently, the enhancement of the proper
connections relative to the background. Thus, adap-
tation will take longer in order to depress the excess
strength of the synapses, but the learning remains
perfect. The network compensates for noise com-
pletely automatically without further modifications!
We believe that this feature is important for the
model to be biologically reasonable.

5.2.More neurons means better brains?

How does the performance change as the size of
the brain increases? We know that generally larger
brains with more neurons perform more sophisti-
cated, much faster tasks. (Without entering into a
very deep debate, it is a fact that the ratio between

brains is determining which species become prey
and which become predators, making we humans
the predator by excellence which our environment
has to endure.)

In contrast, the common result for traditional arti-
ficial neural networks, often hidden under the rug, is
that as the networks get larger they perform worse!
In our model, the scaling of the learning time with
the size of the middle layer is interesting and differ-
ent. A network with a large middle layer offers many
more options for the system to select among when an
incorrect pattern is suppressed. This speeds up the
learning of correct associations, as shown in Fig. 4,
where the average learning time is plotted for a
network with a constant number (seven used here)
of units in the I and K layers and an increasing
number of neurons in the middle layer. It can be
seen that the performance improves for increasing
ratios, an increase of one order of magnitude in size
speeds up learning time by two orders of magnitude.
Results for re-learning scale in the same qualitative
way. Bigger is better, in contrast with all other
schemes that we are aware of where learning is
slower in bigger systems. For constant middle
layer size, the scaling of learning timet versus
input (and output) layer sizeN is t , N2, also in
contrast with other models where the scaling is
usually exponential inN.

Biologically, this is of great importance. Increas-
ing the quantity of neurons is cheap, since it does not
require further DNA, it only requires a few genes
responsible for the turn-off of neurogenesis. In
contrast, hardwiring is expensive since it requires
new information for each connection. For our
system, quantity is quality.

5.3.Random geometry

In order to illustrate the robustness of the model,
which is important for our mechanism to have any
biological relevance, we have studied an architec-
ture where each ofn neurons is arbitrarily connected
to a numbernc of other neurons. A number of
neurons (ni and no) is arbitrarily selected as input
and output neurons, respectively. As before, an
input neuron is chosen. This neuron is connected
with several others, and the one which is connected
with the largest synaptic strength fires. That neuron
is also connected with several others, and the one
with the strongest connection is selected next. If,
after a number of firing events, the correct output
has not been reached, each synapse in the chain of
firings is depressed as before. If the correct output
is achieved, no modification occurs. A system with
n � 25, ni � nc � no � 5 behaves like the layered
structure presented above. This illustrates the devel-
opment of structure even in the case where all initial
connections are absolutely uncorrelated. We have
systematically studied the performance of a system
with 200 neurons, out of which five were chosen as
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outputs, and five as inputs. After learning to
correctly connect the inputs with the proper outputs,
a single input–output assignment was changed arbi-
trarily, and the learning process continued. After
several such reassignments, the typical learning
time for a new connection was as little as five time
steps, compared with perhaps 1000 time steps for the
initial learning. However, sometimes the process
failed, certainly because of destruction of old
patterns due to interference with new patterns, and
the process might take several hundred time steps.
The mechanism is not perfect, and it should not
necessarily be so. It would be interesting to study
systematically the probability of breakdown versus
the number of neurons and their connectivity.

5.4.Simulated organism

We now show how the model works on a “closed
loop” situation similar to the way sensory-motor
integration works in an infant, or in an analogous
developmental stage of any organism. An “agent”
has been constructed using a two-layer architecture
similar to the one discussed above. The agent is

supposed to track a moving target, which makes
one or more steps randomly to the left or to the
right at each time step. The “sensory” input layer
gives the position of the agent relative to the target.
The output cells can be thought of as muscles
moving the agent to the left or to the right by various
amounts. A correct output is one which takes the
agent closer to the target, a wrong output, triggering
modifications of synaptic strengths, is one that does
not. Seven inputs and seven outputs, and 300 units in
the middle layer were used. Figure 5 illustrates the
initial process of learning and the response to
various drastic perturbations to the network.1 The
network is able to discover all by itself the proper
map of connections between sensory and motor
neurons that ensures a perfect tracking. The samples
a–f can be thought of as six different bugs with six
different behavioral patterns. The agent can quickly
switch behavior when a new bug, or an old bug with
a previously identified pattern, arrives at the arena.

6. DISCUSSION

The biological plausibility of our scheme depends
on the realization at the neuronal level of two crucial
features. (1) Activity propagates through the strongest
connections, that is a winner-take-all action. This
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Fig. 5. An autonomous agent learning to track a randomly moving object, subjected to various (some drastic)
perturbations. (Top) Position of the object (continuous line) and of agent (dashed line) as a function of time.
(Bottom) Tracking error as a function of time expressed as the absolute value of the distance between the object
and the model. At about 250 time-steps the model had learned to perfectly track the object. (a) At the time
indicated by the arrow, the inputs are inverted. The network re-maps in a few hundred steps and the error goes
back to zero. (b) Seventy-five per cent of the synapses were randomized at the time indicated by the arrow. The
network quickly reorganized and decreased the error. (c) Seventy-five per cent of the synapses are removed from
the middle layer. The error grew and although it returned to relatively small values, it was no longer able to
perfectly track the object. (d) Seventy-five per cent of the input synapses were removed. The network was unable

to cope with the damage and the agent took off in the wrong direction.

1The computer code used in this simulation can be found at
http://www.santafe.edu/, dchialvo/psprints.html.



can be fulfilled by a local circuit organization,
known to exist in all cortices, where feedforward
and recurrent excitations compete with lateral and
feedback inhibitory connections. The robustness of
such operations has been extensively studied on
detailed neuronal models.32 The co-existence of
LTD in some of these structures might constitute a
verification of our theory.8,16 Alternatively, a global
threshold mechanism keeping the firing rate low
would suffice. (2) Depression of synaptic efficacy
involves the entire path of firing neurons. A process
must exist such that punishment can be relayed long
after the neuron has fired, when the response from
the outer world to the action is known. We conjec-
ture a mechanism of “tagging” synapses for subse-
quent LTD, analogous to (but mirroring) recent
result for LTP.24 Frey and Morris recently reported
a process where temporary modifications at the
synapses in a slice of the hippocampus of a ratin
vitro resulted from external stimuli.24 The results
suggest that there is a “tagging” mechanism, remain-
ing for a period of approximately 1 h. As a conse-
quence, the synapse which is re-stimulated within
this period is the one where LTP is consolidated.
We simply suggest that a similar process exists
where the synapse is temporarily eligible for LTD.

Propagation of activity-dependent long-distance
LTD has been directly demonstrated by Fitzsimonds
et al.23 in cultured hippocampal neurons from rat
embryos. Fitzsimondset al. suggest that signals
travel backward extracellularly for long distances
on a much slower time-scale than the forward-
propagating signals through the neurons. This is
precisely what we need for our model to work! In
contrast, traditional back-propagation models do not
invoke such long-range LTD.

It is worth commenting on recent experiments on
rats subjected to behavioral stress. Xuet al.41 found
that when rats were placed in an unfamiliar record-
ing box, stable homosynaptic LTD was induced in
the CA1 area, even long after the behavior was
experienced. The same stress blocked the induction
of LTP—again in precise accordance with our
scenario. The biological plausibility of mainstream
models of learning and memory are seriously
compromised by very recent results25 indicating
regeneration of neurons in the adult primate hippo-
campus. Our ideas clearly welcome this novel
experimental result, since learning in our model is
not associated with a rigid permanent structure. New
neurons will be automatically incorporated when
need be.

In addition to the idea of negative feedback only
(learning from mistakes), yet another concept turned
out to be essential for the function of the brain. The
activity must be kept low, i.e. only a relatively small
number of neurons can be associated with a given
task. This is important in order to solve the “credit
assignment” problem, i.e. to identify the synapses to
be punished for bad behavior in a self-organized

way. This is accomplished in the current model by
a “winner-take-all” or “extremal” dynamics where
only one neuron (or a small proportion) fires at a
time. This is also in line with the fact that, in relevant
brain areas, many pyramidal neurons only excep-
tionally fire at high rates. This type of dynamics
(which has also been applied to models of evolution)
leads to a critical state where very many neurons are
near to the threshold, in contrast to all other neural
network models where most synaptic connections
are deeply suppressed, i.e. the activity is subcritical.
At a critical point in physics, the susceptibility is
high, which means that it is easy to change the
pattern of activity. It is precisely this sensitivity
that translates into high adaptability, and also fast
convergence.

Although our model is only a caricature of a real
brain, all the main ingredients are biologically
reasonable and correspond to plausible physio-
logical processes. The model is completely self-
organized with no need for external computation
of synaptic strengths. Nevertheless, it can out-
perform other more complex and sophisticated
models based on the current paradigm of positive
reinforcement. All control mechanisms are local at
the postsynaptic site of the active neurons, and infor-
mation for plasticity is fed back globally to all
neurons. This is the first concrete model in which
depressing synaptic efficacy leads to learning.

6.1.A historical perspective

Historically, processes that were thought of as
directed instructional learning have been shown to
be caused by selection. The Lamarckean view of
evolution as a learning process, where useful
acquired features are strengthened, was replaced
by the Darwinian view of evolution as a selection
process, where the unfit species are weeded out. A
similar paradigm shift occurred in immunology,
where the clonal selection theory has replaced the
traditional instructionist learning template-type
models. Ironically, if our thinking turns out to be
correct, learning is not a (directed) learning process
either, but also an evolutionary selection process in
somatic time-scale where incorrect connections are
weakened. A similar “selectionist” view for learning
was put forward by Jerne29 and more recently expli-
citly proposed, at the level of neuronal groups, by
Edelman (reviewed in Ref. 22). A superb account of
the evolution of these ideas is given by Cziko:17

“Current research is under way to determine whether
unambiguous physical evidence can be found for the
overproduction and elimination of newly formed
synapses in the adult brain in response to environ-
mental changes. Such a finding would place the
brain alongside the immune system as another strik-
ing example of how cumulative variation and selec-
tion processes during the lifetime of an organism
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make it possible to adapt to complex, changing
environments.”

However, it seems that the current focus in this
area is limited to collecting and arguing the evidence
of pruning of neuronal synapses during develop-
ment. As discussed recently,36 a selectionism view
has wider implications for brain function. With the
exception of Edelman’s work22 and Dehaene19

no well-defined mathematical models have been
proposed to test the value of these ideas. We go
much further by explicitly demonstrating that
synaptic depression in conjunction with extremal
dynamics is a simple, reliable, fast and robust
mechanism of synaptic selection by which an initi-
ally structureless group of neurons can self-organize
into a plastic structure of connections performing a
relevant function in response to changing environ-
mental demands.

Of course, our model is only a toy model, and as
such, it leaves many things unspecified and much
more work must be done. We leave open the possi-
bility that the two crucial mechanisms proposed; (i)
the selection of the strongest synaptic connection
and (ii) the synaptic depression of the unfit, could
manifest themselves in a variety of forms in bio-
logical reality. For instance, it might well be that
some sort of long-lasting inhibition and not LTD
can be the specific mechanism for weeding out the
“unwanted” synapses in some cases. We are also
comfortable with the idea that the winner-take-all
scenario could be implemented in many different
ways.

We feel that we have only scratched the surface of

a vast new area of neuronal modeling and under-
standing. Among the immediate questions which
arise one might mention more quantitative measures
for the capacity and efficiency of our set-up.
Although comparison with traditional artificial
neural network model is like comparing apples
with oranges (since these latter models cannot
even formally be thought of as a part of an autono-
mous learning system), such comparison might
nevertheless be useful for some purposes. Also,
perhaps the brain unit constructed here should be
seen as a part of a larger hierarchical system,
where some parts of the brain act like the environ-
ment of other parts, broadcasting negative feedback
signals.

So, coming to the end of the millennium, we
might argue that selectionism rules essentially all
biological processes, ranging from evolution to
immunology and brain function, with the new
twist that weeding out is the essential point rather
than enhancement and unbounded proliferation of
the fit.
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